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ON DERIVATION ALGEBRA BUNDLE OF AN ALGEBRA
BUNDLE
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ABSTRACT. We prove local triviality of a semisimple algebra bundle and that
its corresponding Lie algebra bundle is a direct summand of the centre and a
semisimple ideal bundle. Further we prove that the radical bundle of an algebra
bundle is a characteristic ideal bundle. Using these results we establish that an
algebra bundle is semisimple if and only if its derivation algebra bundle is either
semisimple or zero.
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1. INTRODUCTION

J. P. Serre posed the question: does there exist a Hausdorff Lie group bundle
whose Lie algebra bundle is isomorphic to a given Lie algebra bundle.

A. Douady and M. Lazard have constructed a Lie group bundle G({) (not nec-
essarily Hausdorff) whose Lie algebra bundle is isomorphic to a given Lie algebra
bundle ¢ [4, Theorem 3]. They ask whether analogous result still holds locally
(around each point of the base space) if one requires G(¢) to be Hausdorff in ana-
lytic case [4, Page 151]. Don Coppersmith has constructed an example of an analytic
Lie algebra bundle over an analytic Hausdorff manifold which does not correspond
to the Lie algebra bundle of any Hausdorff Lie group bundle [3].

There exists a Hausdorff Lie group bundle G(¢) over a space X whose Lie algebra
bundle is isomorphic to ( if all fibers (, are isomorphic by proving a result in real
algebraic geometry, namely the real orbit of a real point under an algebraic group
is open in the real part of its complex orbit [11].

Chidambara and Kiranagi [2] have defined Hochschild cohomology of an alge-
bra bundle with co-efficients in a bimodule bundle and interpreted the cohomology
modules as modules of module bundle enlargements and discussed its applications.
Kiranagi and Rajendra [13] using cohomological methods have proved that an alge-
bra bundle is a semi-direct product of its radical bundle and a semisimple algebra
bundle. They have also studied representations and special representations of an
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algebra bundle using Hochschild cohomology. Further they have obtained some re-
sults in [16, 17].

Here we prove that an associative algebra bundle ¢ is semisimple if and only if
its derivation algebra bundle ©(¢) is semisimple or {0} by showing that the corre-
sponding Lie algebra bundle of a given semisimple associative algebra bundle is a
direct summand of the centre (radical bundle) and a semisimple ideal bundle over a
compact Hausdorfl space.

Notations and Terminology: All our algebra bundles ¢ = (¢, p, X, 0) are asso-
ciative algebra bundles over a field of characteristic zero unless otherwise mentioned.
All our bundles, subbundles and ideal bundles are over the same base space X.

2. ASSOCIATIVE (LIE) ALGEBRA BUNDLE

An associative (Lie) algebra bundle [4] is a vector bundle & = (&,p, X) to-
gether with a morphism 0 : £ @ ¢ — ¢ which induces an associative (Lie) algebra
structure on each fiber &;.

A locally trivial associative (Lie) algebra bundle [6] is a vector bundle
& = (&,p, X) in which each fiber is an associative (Lie) algebra and for each z in X
there exist an open set U of z in X, an associative (Lie) algebra A and a homeomor-
phism @ : U x A — U &, such that restriction @, : x x A — &, is an associative

zeU
(Lie) algebra isomorphism for each z in U.

A subalgebra bundle of an associative (Lie) algebra bundle is a vector subbun-
dle in which each fiber is a subalgebra. Further if each fiber is an ideal then it is
called an ideal bundle.

A morphism ¢ : & — & of associative (Lie) algebra bundles & and & over the
same base space X is a continuous map and for each z in X, ¢, : &, — &2, is a
associative (Lie) algebra homomorphism. A morphism ¢ is an isomorphism if ¢ is
bijective and ¢! is continuous.

An associative algebra A is simple if it has no proper ideals and A% = {ab :
a,b € A} # {0}. An associative algebra A is said to be semisimple if its Jacobson
radical is {0}, where the Jacobson radical is the maximal nilpotent ideal in a finite

dimensional associative algebra [20].

An associative (Lie) algebra bundle ¢ is simple if it has no proper ideal bundles

and 2 # {0}.
An associative (Lie) algebra bundle is semisimple if each fiber is semisimple.

Note : A simple bundle is not semisimple in general [12].



On derivation algebra bundle of an algebra bundle

2.1. Radical bundle of an associative algebra bundle. Local triviality of an
algebra bundle ¢ is given by ¢ : U x A = U,cp&s, such that @, : A — & is
an algebra isomorphism where A is an associative algebra. Let R, be the (Jacob-
son) radical of &, and J(A) the radical of algebra A. Then ¢, (J(A)) C R, and
071 (Re) € J(A) 18, Lemma, p.59]. Hence plyy ) : U x J(A) = | J R, defines
zeU
an isomorphism. We call the ideal bundle f = U R, the radical bundle of &.
rzeX

2.2. Radical bundle of a Lie algebra bundle. Let ¢ be a locally trivial Lie
algebra bundle, ® : U x L — U,cpy(, be a local triviality of (, where L is a Lie
algebra. Let R be the radical of L, (] be the radical of (. Then

Olyxr:UxR— |J &
zelU
is an isomorphism as radical being the maximal solvable ideal. We call the ideal
bundle £(¢) = Uzex(l, the radical bundle of .

Algebra bundle is semisimple if its radical bundle is {0}.
Theorem 2.1. Every semisimple algebra bundle & is locally trivial.

Proof. By definition there is a continuous map 6 : £ x £ — & such that the restriction
0r 1 &x X & — &, induces a semisimple algebra structure on each fiber ¢, and the
underlying vector bundle is locally trivial. Hence we cover X by open sets U and
identify ¢| = p~1(U) with U x V where V is a fixed vector space with basis {v; }7;.
Hence we get the commutative diagram

Ux(VeV) 2, uxv

l/

where 0|y (z, (w1, ws)) = (z,0z(w1, w2)) Le. Oly(z, (vi,v))) = (2,02(vi,v5)) =

Z Cl] vy Since |y is continuous, Ck is continuous too. Therefore the mapping

U — By, z = 0, = C’f](:r) is continuous where B, is the set of all semisimple algebra
structures on V' with the topology induced from the set B of all bilinear maps on
V.

The group G = GL(n, R) acts as an algebraic group of transformations on the
variety Bp of all algebra structures on V and B, forms an invariant subvariety
from the fact that H%(A, A) = 0 [8, Theorem 2.3, p.927], for a finite dimensional
semisimple algebra A = (V,0y),0p € B, at some point x9 € U. Then the orbit
Gl of 6y is open in By [5, Corollary, p 65] . Let us denote the inverse image of
Gy C B, under the map x — 6y from U to By. Thus for every z € X we have an
open set U containing = and a continuous map from U — Gfy. The orbit Gy is
locally compact and Hausdorff being an open subset of B, as B is a locally compact
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Hausdorff space. Thus Gfy and G = GL(n, R) satisfy all the required conditions of
the Aren’s theorem [15]. Therefore Gfy is homeomorphic to G/H where H is the
stability group of fy. So we have a continuous map : U — G0y — G/H. Principal
bundle G — G/H is locally trivial as H is a closed sub group of G [1, Theorem
6.5.2, p 126 ]. Hence by shrinking the open set U if necessary, we may assume that
there exists a continuous map v : U — GL(n, R) such that for each x in U, one gets

Otherwise stated v (z) is an isomorphism of the fixed associative algebra &, onto
the associative algebra &,.

Thus the map ¢ : p~1(U) =U x V — U x V given by (z,v) = (z, (¢(x))"(v))
is a homeomorphism and by restriction to each fiber p~!(z) — V gives rise to an
associative algebra isomorphism. O

3. ALGEBRA BUNDLE AND ITS CORRESPONDING LIE ALGEBRA BUNDLE

Let us denote by A’ the Lie Algebra obtained from A by defining the Lie product
of two elements as [a, b] = ab — ba. We also know that the algebra homomorphism
¢ : A — B induces a Lie algebra homomorphism, ¢! : A' — B!. So obviously
if (&,p, X) is a locally trivial associative algebra bundle then the corresponding Lie
algebra bundle (&, p, X) is locally trivial. Also it is clear that the associative algebra
A is the universal enveloping algebra of a Lie algebra A!. Now we prove the
following theorem of Jacobson [10, Criterion 1, page 513] for Lie algebra bundles.

Theorem 3.1. If¢ is a semisimple algebra bundle over a compact Hausdorff space X
then the corresponding Lie algebra bundle £ = Z(£') ® $ where Z(£') = Uzex Z(€L)
is the centre of £ and $) is the semisimple ideal bundle of €.

Proof. Associative algebra bundle being semisimple is locally trivial by theorem 2.1.
Then obviously the corresponding Lie algebra bundle ¢ is locally trivial. Hence by
[12], fl = R+ H where R is the radical and § is semisimple subalgebra bundle.
Since ¢ is locally trivial, there exists an open set U of x in X and standard fiber
A such that p~'(U) — U x A is a homeomorphism such that £, — z x A is an
algebra isomorphism, which implies p~'(U) = ¢!|y — U x Al is homeomorphism
such that & — z x A = 2 x (Z(A!) © §) is aLie algebra isomorphism [9]. This
implies that the radical of £, is the centre of ¢, as homomorphic image of maximal
solvable ideal is maximal solvable. Thus each radical of £, being the centre, we have

d=2zEesn. O

4. DERIVATION ALGEBRA BUNDLES

Let £ be an algebra bundle. A vector bundle morphism D : £ — ¢ is a derivation
if

D(u-v) =u-D()+ D(u) v, for all u, v €&,

A derivation D of £ is called inner if there is a section S of &, such that
D(u) =u-S(z) — S(x) - u, for all v in & and = in X.
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Let ©(&) be the set of all derivations of an algebra bundle £&. Then D(¢) is a
locally trivial Lie algebra bundle [14].

The Lie algebra bundle D(¢) is called the derivation algebra bundle of .

An ideal bundle 7 of an algebra bundle ¢ is called a characteristic ideal bundle
if D(n) C n for all D in D(¢).
We now prove the following theorem using the methods of [7].

Theorem 4.1. The radical bundle R is a characteristic ideal bundle of an algebra
bundle &.

Proof. Let ® O %2 D ®3 D ... R+ = {0} be the sequence of the derived algebra
bundles of R. Let D € D(€) be any derivation of ¢. Suppose that D*(RFt1) C R for
alli =1,2,---; (trivial for k = p). Then we shall show that D*(R¥) C ;i =1,2,---.

Since ®* is an ideal bundle of ¢ , then the set ® + D(R¥) is an ideal bundle of ¢.
For, if ® : U x A = |,y & is a local triviality of &, then
@lywgay : U x J(A) = Uyep Re gives the local triviality of & where J(A) is the
Jacobson radical of an algebra A.

Then U x D(J(A)*) = U,ep D(Ra)*, (2,D) — D@ is an isomorphism, for
any derivation D € D(J(A)) as D(J(A)*) € J(A)F and &(J(A)F) c (R)*.
Hence,
U % J(4) +D((J(A)") = [J (e +D(R)")
zeU
(y,u, D) = (y, Pz(u), 2, D, 1) is an isomorphism. Thus [, x (Re + D (Ry)F) is a
locally trivial ideal bundle of &.

Suppose that D' (R?*) C R for all = 1,2,---; (trivial for k > %) Then we
shall show that D' (RF) C R;i=1,2,---.

The derived algebra bundle (R + D(R*)) is contained in R, for fiberwise we have
hi,hs € %I;
2D (h1)D(hy) = D*(h1hy)mod(R,)
and by hypothesis D?(R2*) ¢ R,. Hence (R, + D(RF)) is nilpotent. Then D(R%) ¢
R, as R, is maximal nilpotent ideal.

Suppose we have already proved that D*(R*) C R for all i < n. Then (R+D"(R*))
is an ideal bundle in ¢ for

D"(h)u = D" (hu)mod(R)
for all h € R% and , u € &, since D" (hu) = Z (77) D" "hD"u. The derived algebra
,

r=0

bundle (R + D"(RF))’ is contained in R, for fiberwise we have

<2”’> D"™(h1)D"(hs) = D**(h1hy)mod(R,)
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and by hypothesis D*"(R2¥)  ®,. Hence (R,+D"(R%)) is nilpotent. Then D™ (R)
R, as N, being maximal nilpotent ideal. Thus D*(R*) C R for all i then by reverse
induction on k, D(R) C R for all D € D(§).

O

In the same manner we can prove :
Theorem 4.2. The radical R(C) of a Lie algebra bundle ¢ is a characteristic ideal.

Lemma 4.1. Fvery derivation of an algebra bundle & over a compact Hausdor[f
space is the sum of an inner derivation and a derivation which annuls &.

Proof. Let D be any derivation of ¢ = R+ & [13]. Then by Theorem (4.1), we have
D(R) C R. As G is semisimple there exists an element vy = S(z) in &, such that
D(s) = svg —vps = [s wp] for every s in &,, where S is a section of £. Let Dy,
denote the inner derivation effected by vg. We set D' = D — D,,,, then we have
D'(6) = 0. Also we have for any r € R, s € &,

D'(sr) =rD'(s) +sD'(r) = sD'(r)
and
D'(rs)=D'(r)s+rD'(s) =D (r)s

Conversely, any derivation D of R satisfying above property gives a derivation of
¢ if we define D(S) = 0 as continuity of D on ¢ follows from the pasting lemma. O

Lemma 4.2. Let & be an algebra bundle over a compact Hausdorff space. Then there
is an abelian ideal bundle in the derivation algebra bundle ©(&) of & if R C Z(§),
the center of £ .

Proof. Let D be any derivation of ¢ = R+ & [13], then by Theorem (4.1) we have
D(®R) C R. Also D|g being inner there is a section S with ug = S(z) € & and
D|s(s) = ups — sug for all s € S,. Thus D|s maps & into itself for all D € D(¢) as
D|g is non zero inner if ug ¢ Z(&y).

Let RORZDO N3 D .- O RF = 0. Tt is easily seen by induction on the exponent
i that every R’ is a characteristic ideal bundle of £&. Suppose that R # 0. If R2 = 0,
we can define a derivation of ¢ as follows

D(r)=rifre&l; D(s) =0if s € &,

Then D is a derivation of ¢ since R? = 0. Continuity of D follows from the pasting
lemma. If D* is any other derivation of ¢ we have for all r € £,

[D,D*|(r) = (D*D—DD")(r)
= D*(r) = D(D*(r))
p— ()7
since ¥ being characteristic D*(r) C R and for all s € &,

[D, D*|(s) = (D*D — DD*)(s) = —D(D*(s)) = 0, Since D*(&) C &
as G is an ideal bundle of ¢ and D*|g is inner and non zero with respect to S.
Hence [D, D*] = 0 for every derivation D* € ©(¢). Thus D is in Z(D(¢)). For
R2 £ 0, and so, in the series above, k > 2. If S(z) = up € R*2 where § is a section
of ¢ we can define a derivation D, of ¢ as follows:
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Dyo(r) =wp.r if r € R; Dy, (s) =0 if s € &,.
If D is any other derivation of £ we have [Dy,, D](r) = D(ug - 7) — ug - D(r) =
D(ug) -7 if r € Ry, and [Dy,, D](s) = =Dy, D(s) =0if s € &,.
Hence [Dy,, D] = Dp(yy), which shows that the derivations of the form D,
ug € R¥~2, constitute non zero abelian ideal bundle in D(¢). O

Theorem 4.3. An algebra bundle & over a compact Hausdorff space X is semisimple
if and only if its derivation algebra bundle D (&) is semisimple Lie algebra bundle or

{0}

Proof. Suppose ¢ is semisimple then ©(€) consists only of inner derivations. Let us
denote by ¢! the Lie algebra bundle obtained from ¢ by defining the commutator of
two elements as [u, v] = uv — vu for all u, v € &,.

Consider the morphism ad : & — D(¢) defined by ad(u) = ad,, where ad,(v) =
uv — vu for all u,v € &, is an onto Lie algebra homomorphism. Then

ker(ad), = {u€é | ady(&) =0}
{ucé | ady(v) =0 forall v € &,}
Z(€l) = the centre of ¢, = the radical of &,

Thus ker ad = J,cy ker(ad), = Z(¢') is an ideal bundle of ¢! Hence ¢'/Z(¢!) =
D(¢) as Lie algebra bundles. Then D(¢) is semisimple or {0} [19] since Z(&!) is the
radical bundle of ¢ by the theorem 3.1.

Suppose now that D(¢) is semisimple or {0}. Algebra bundle ¢ being locally
trivial over compact Hausdorff space we have £ = £ + & [13, Theorem 5.1]. If
R # 0, then consider Dx(£) be the set of all inner derivation of ¢ which are effected
by the elements of ®. Then Dx(€) is an ideal bundle of ©(£) as Dx(&) is a subspace
of D(¢) and R being a characteristic ideal bundle of ¢, we have [D, D](u) =
D,D(u) — DD,(u) = Dp,(u) for all » € R and u € &. Since R is solvable, Dx (&)
is solvable ideal bundle of ®(¢) being homomorphic image of i and hence reduces
to zero. Thus R is contained in the Z(¢). Hence by Lemma (4.2) there is a non
zero abelian ideal bundle in ©(¢) which contradicts to the assumption that ©(£) is
semisimple. Hence the radical bundle ® = 0. Thus ¢ is semisimple.
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